Exercise 69

Show that the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ and the hyperbola $x^{2} / A^{2}-y^{2} / B^{2}=1$ are orthogonal trajectories if $A^{2}<a^{2}$ and $a^{2}-b^{2}=A^{2}+B^{2}$ (so the ellipse and hyperbola have the same foci).

Solution

The points of intersection are found by solving the system of equations for x and y.

$$
\left\{\begin{array}{l}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1
\end{array}\right.
$$

Subtract the respective sides of these equations.

$$
\begin{gathered}
\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)-\left(\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}\right)=0 \\
x^{2}\left(\frac{1}{a^{2}}-\frac{1}{A^{2}}\right)+y^{2}\left(\frac{1}{b^{2}}+\frac{1}{B^{2}}\right)=0 \\
x^{2}\left(\frac{A^{2}-a^{2}}{a^{2} A^{2}}\right)+y^{2}\left(\frac{B^{2}+b^{2}}{b^{2} B^{2}}\right)=0 \\
y^{2}\left(\frac{B^{2}+b^{2}}{b^{2} B^{2}}\right)=x^{2}\left(\frac{a^{2}-A^{2}}{a^{2} A^{2}}\right)
\end{gathered}
$$

Assume that $a^{2}-b^{2}=A^{2}+B^{2}$ so that $a^{2}-A^{2}=B^{2}+b^{2}$.

$$
\begin{aligned}
y^{2}\left(\frac{B^{2}+b^{2}}{b^{2} B^{2}}\right) & =x^{2}\left(\frac{B^{2}+b^{2}}{a^{2} A^{2}}\right) \\
y^{2}\left(\frac{1}{b^{2} B^{2}}\right) & =x^{2}\left(\frac{1}{a^{2} A^{2}}\right) \\
a^{2} A^{2} y^{2} & =b^{2} B^{2} x^{2} \\
\frac{A^{2} y^{2}}{B^{2} x^{2}} & =\frac{b^{2}}{a^{2}}
\end{aligned}
$$

Differentiate both sides of the given equations with respect to x.

$$
\frac{d}{d x}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=\frac{d}{d x}(1) \quad \frac{d}{d x}\left(\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}\right)=\frac{d}{d x}(1)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \quad \frac{2 x}{A^{2}}-\frac{2 y}{B^{2}} \frac{d y}{d x}=0
$$

Solve each equation for $d y / d x$.

$$
\begin{aligned}
\frac{2 y}{b^{2}} \frac{d y}{d x} & =-\frac{2 x}{a^{2}} & -\frac{2 y}{B^{2}} \frac{d y}{d x} & =-\frac{2 x}{A^{2}} \\
\frac{d y}{d x} & =-\frac{b^{2} x}{a^{2} y} & \frac{d y}{d x} & =\frac{B^{2} x}{A^{2} y}
\end{aligned}
$$

At any point of intersection $\frac{A^{2} y^{2}}{B^{2} x^{2}}=\frac{b^{2}}{a^{2}}$, so the slopes of the tangent lines are as follows.

$$
\begin{array}{rr}
\frac{d y}{d x}=-\left(\frac{A^{2} y^{2}}{B^{2} x^{2}}\right) \frac{x}{y} & \frac{d y}{d x}=\frac{B^{2} x}{A^{2} y} \\
\frac{d y}{d x}=-\frac{A^{2} y}{B^{2} x} & \frac{d y}{d x}=\frac{B^{2} x}{A^{2} y}
\end{array}
$$

The slopes are negative reciprocals at the points of intersection; therefore, the familes of curves defined by $x^{2} / a^{2}+y^{2} / b^{2}=1$ and $x^{2} / A^{2}-y^{2} / B^{2}=1$ are orthogonal trajectories, assuming that $A^{2}<a^{2}$ and $a^{2}-b^{2}=A^{2}+B^{2}$.

