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Exercise 69

Show that the ellipse x2/a2 + y2/b2 = 1 and the hyperbola x2/A2 − y2/B2 = 1 are orthogonal
trajectories if A2 < a2 and a2 − b2 = A2 +B2 (so the ellipse and hyperbola have the same foci).

Solution

The points of intersection are found by solving the system of equations for x and y.
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Subtract the respective sides of these equations.(
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Assume that a2 − b2 = A2 +B2 so that a2 −A2 = B2 + b2.
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Differentiate both sides of the given equations with respect to x.
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Use the chain rule to differentiate y = y(x).
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Solve each equation for dy/dx.
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=
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At any point of intersection A2y2

B2x2 = b2

a2
, so the slopes of the tangent lines are as follows.
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The slopes are negative reciprocals at the points of intersection; therefore, the familes of curves
defined by x2/a2 + y2/b2 = 1 and x2/A2 − y2/B2 = 1 are orthogonal trajectories, assuming that
A2 < a2 and a2 − b2 = A2 +B2.

www.stemjock.com


